您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2012年浙江省数量和位置变化中考数学题分类解析

编辑:

2012-12-11

(2) ①过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,

当x=- 时,y=(- )2= ,

即OE= ,AE= 。

∵∠AOE+∠BOF=180°-90°=90°,21世

∠AOE+∠EAO=90°,

∴∠EAO=∠BOF。

又∵∠AEO=∠BFO=90°,∴△AEO∽△OFB。

∴ 。

设OF=t,则BF=2t,∴t2=2t,解得:t1=0(舍去),t2=2。

∴点B(2,4)。

②过点C作CG⊥BF于点G,

∵∠AOE+∠EAO=90°,∠FBO+∠CBG=90°,∠EOA=∠FBO,

∴∠EAO=∠CBG。

在△AEO和△BGC中,∠AEO=∠G=900,∠EAO=∠CBG,AO=BC,

∴△AEO≌△BGC(AAS)。∴CG=OE= ,BG=AE= 。

∴xc=2- ,yc=4+ 。∴点C( )。

设过A(- , )、B(2,4)两点的抛物线解析式为y=-x2+bx+c,由题意得,

,得 。

∴经过A、B两点的抛物线解析式为y=-x2+3x+2。

∵当x= 时,y=-( )2+3× +2= ,∴点C也在此抛物线上。

∴经过A、B、C三点的抛物线解析式为y=-x2+3x+2=-(x- )2+ 。

平移方案:先将抛物线y=-x2向右平移 个单位,再向上平移 个单位得到抛物线

y=-(x- )2+ 。

【考点】二次函数综合题,正方形的判定和性质,等腰直角三角形的判定和性质,待定系数法,曲线上点的坐标与方程的关系,全等和相似三角形的判定和性质,平移的性质。

【分析】(1)如图,过点A作AD⊥x轴于点D,

∵矩形AOBC是正方形,∴∠AOC=45°。

∴∠AOD=90°-45°=45°。

∴△AOD是等腰直角三角形。

设点A的坐标为(-a,a)(a≠0),

则(-a)2=a,

解得a1=-1,a2=0(舍去),∴点A的坐标-a=-1。

(2) ①过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,先利用抛物线解析式求出AE的长度,然后证明△AEO和△OFB相似,根据相似三角形对应边成比例列式求出OF与BF的关系,然后利用点B在抛物线上,设出点B的坐标代入抛物线解析式计算即可得解。

②过点C作CG⊥BF于点G,可以证明△AEO和△BGC全等,根据全等三角形对应边相等可得CG=OE,BG=AE,然后求出点C的坐标,再根据对称变换以及平移变换不改变抛物线的形状利用待定系数法求出过点A、B的抛物线解析式,把点C的坐标代入所求解析式进行验证变换后的解析式是否经过点C,如果经过点C,把抛物线解析式转化为顶点式解析式,根据顶点坐标写出变换过程即可。

4. (2012浙江衢州12分)如图,把两个全等的Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.

(1)求该抛物线的函数解析式;

(2)点P为线段OC上一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由.

(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

【答案】解:(1)∵抛物线y=ax2+bx+c经过点O,∴c=0。

又∵抛物线y=ax2+bx+c经过点A、C,

∴ ,解得 。

∴抛物线解析式为 。

(2)设点P的横坐标为t,∵PN∥CD,∴△OPN∽△OCD,可得PN= 。∴P(t, )。

∵点M在抛物线上,∴M(t, )。

如图1,过M点作MG⊥AB于G,过P点作PH⊥AB于H,

AG=yA﹣yM=2﹣ ,

BH=PN= 。

当AG=BH时,四边形ABPM为等腰梯形,

∴ ,化简得3t2﹣8t+4=0。

解得t1=2(不合题意,舍去),t2= ,

∴点P的坐标为( )。

∴存在点P( ),使得四边形ABPM为等腰梯形。

(3)如图2,△AOB沿AC方向平移至△A′O′B′,A′B′交x轴于T,交OC于Q,A′O′交x轴于K,交OC于R。

由A、C的坐标可求得过A、C的直线为yAC=﹣x+3

设点A′的横坐标为a,则点A′(a,﹣a+3),

易知△OQT∽△OCD,可得QT= 。

∴点Q的坐标为(a, )。

设AB与OC相交于点J,

∵△A′RQ∽△AOJ,相似三角形对应高的比等于相似比,∴ 。

∴ 。

∴KT= A′T= (3﹣a),A′Q=yA′﹣yQ=(﹣a+3)﹣ =3﹣ a。

∴S四边形RKTQ=S△A′KT﹣S△A′RQ= KT•A′T﹣ A′Q•HT

∵ <0,

∴在线段AC上存在点A′( ),能使重叠部分面积S取到最大值,最大值为 。

【考点】二次函数综合题,二次函数的图象和性质,待定系数法,曲线上点的坐标与方程的关系,二次函数的最值,等腰梯形的性质,相似三角形的判定和性质,图形平移的性质以及几何图形面积的求法。

【分析】(1)抛物线y=ax2+bx+c经过点O、A、C,利用待定系数法求抛物线的解析式。

(2)根据等腰梯形的性质,确定相关点的坐标以及线段长度的数量关系,得到一元二次方程,求出t的值,从而可解。结论:存在点P( ),使得四边形ABPM为等腰梯形。

(3)求出得重叠部分面积S的表达式,然后利用二次函数的极值求得S的最大值。

5. (2012浙江绍兴14分)如图,矩形OABC的两边在坐标轴上,连接AC,抛物线 经过A,B两点。

(1)求A点坐标及线段AB的长;

(2)若点P由点A出发以每秒1个单位的速度沿AB边向点B移动,1秒后点Q也由点A出发以每秒7个单位的速度沿AO,OC,CB边向点B移动,当其中一个点到达终点时另一个点也停止移动,点P的移动时间为t秒。

①当PQ⊥AC时,求t的值;

②当PQ∥AC时,对于抛物线对称轴上一点H,∠HOQ>∠POQ,求点H的纵坐标的取值范围。

【答案】解:(1)由抛物线 知:当x=0时,y=﹣2,∴A(0,﹣2)。

∵四边形OABC是矩形,∴AB∥x轴,即A、B的纵坐标相同。

当y=﹣2时, ,解得 。∴B(4,﹣2)。

∴AB=4。

(2)①由题意知:A点移动路程为AP=t,Q点移动路程为7(t-1)=7 t -7。

当Q点在OA上时,即 , 时,

如图1,若PQ⊥AC,则有Rt△QAP∽Rt△ABC。

∴ ,即 ,解得 。

∵ ,∴此时t值不合题意。

当Q点在OC上时,即 , 时,

如图2,过Q点作QD⊥AB。∴AD=OQ=7(t﹣1)﹣2=7t﹣9。

∴DP=t﹣(7t﹣9)=9﹣6t。

若PQ⊥AC,则有Rt△QDP∽Rt△ABC,

∴ ,即 ,解得 。

∵ ,∴ 符合题意。

当Q点在BC上时,即 , 时,

如图3,若PQ⊥AC,过Q点作QG∥AC,

则QG⊥PG,即∠GQP=90°。

∴∠QPB>90°,这与△QPB的内角和为180°矛盾,

此时PQ不与AC垂直。

综上所述,当 时,有PQ⊥AC。

②当PQ∥AC时,如图4,△BPQ∽△BAC,∴ ,

∴ ,解得t=2。

即当t=2时,PQ∥AC。此时AP=2,BQ=CQ=1。

∴P(2,﹣2),Q(4,﹣1)。

抛物线对称轴的解析式为x=2,

当H1为对称轴与OP的交点时,有∠H1OQ=∠POQ,

∴当yH<﹣2时,∠HOQ>∠POQ。

作P点关于OQ的对称点P′,连接PP′交OQ于点M,过P′作P′N垂直于对称轴,垂足为N,连接OP′,

在Rt△OCQ中,∵OC=4,CQ=1。∴OQ= ,

∵S△OPQ=S四边形ABCD﹣S△AOP﹣S△COQ﹣S△QBP=3= OQ×PM,

∴PM= 。∴PP′=2PM= 。

∵NPP′=∠COQ。∴Rt△COQ∽△Rt△NPP′。

∴ ,即 ,解得 , 。

∴P′( )。∴直线OP′的解析式为 。

∴OP′与NP的交点H2(2, )。

∴当 时,∠HOP>∠POQ。

综上所述,当 或 时,∠HOQ>∠POQ。

【考点】二次函数综合题,曲线图上点的坐标与方程的关系,矩形的性质,相似三角形的判定和性质,二次函数的性质,对称的性质。

【分析】(1)已知抛物线的解析式,将x=0代入即可得A点坐标;由于四边形OABC是矩形,那么A、B纵坐标相同,代入该纵坐标可求出B点坐标,则AB长可求。

(2)①Q点的位置可分:在OA上、在OC上、在CB上 三段来分析,若PQ⊥AC时,很显然前两种情况符合要求,首先确定这三段上t的取值范围,然后通过相似三角形(或构建相似三角形),利用比例线段来求出t的值,然后由t的取值范围将不合题意的值舍去。

②当PQ∥AC时,△BPQ∽△BAC,通过比例线段求出t的值以及P、Q点的坐标,可判定P点在抛物线的对称轴上,若P、H1重合,此时有∠H1OQ=∠POQ。若作P点关于OQ的对称点P′,OP′与NP的交点H2,亦可得到∠H2OQ=∠POQ,而题目要求的是∠HOQ>∠POQ,那么H1点以下、H2点以上的H点都是符合要求的。

6. (2012浙江台州14分)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段与线段的距离.

已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四点.

(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是_____,

当m=5,n=2时,如图2,线段BC与线段OA的距离(即线段AB的长)为______

(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.

(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.

①求出点M随线段BC运动所围成的封闭图形的周长;

②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值,使以A、M、H为顶点的三角形与△AOD相似,若存在,求出m的值;若不存在,请说明理由.

(3)①如图,由(2)知,当点B在⊙O的左半圆时,d=2 ,此时,点M是圆弧M1M2,长2π;

当点B从B1到B3时,d=2 ,此时,点M是线段M1M3,长为8;

同理,当点B在⊙O的左半圆时,圆弧M3M4长2π;点B从B2到B4时,线段M1M3=8。

∴点M随线段BC运动所围成的封闭图形的周长为16+4π。

②存在。如图,由A(4,0),D(0,2), 得 。

(i)∵M1H1=M2H2=2,

∴只要AH1=AH2=1, 就有△AOD∽△M1H1A和△AOD∽△M2H2A,此时OH1=5,OH2=3。

∵点M为线段BC的中点, BC=4,

∴OH1=5时,m=3;OH2=3时,m=1。

(ii)显然,当点M3与点D重合时,△AOD∽△AH3M3,此时m=-2, 与题设m≥0不符。

(iii)当点M4右侧圆弧上时,连接FM4,其中点F是圆弧的圆心,坐标为(6,0)。

设OH4=x, 则FH4= x-6。

又FM4=2,∴ 。

若△AOD∽△A H2M2,则 ,即 ,

解得 (不合题意,舍去)。此时m= 。

若△AOD∽△M2H2 A,则 ,即 ,

解得 (不合题意,舍去)。

此时 ,点M4在圆弧的另一半上,不合题意,舍去。

综上所述,使以A、M、H为顶点的三角形与△AOD相似的m的值为:m=1,m=3,m= 。

【考点】新定义,点到直线的距离,两平行线间的距离,勾股定理,求函数关系式,图形的平移性质,相似三角形的判定和性质。

【分析】(1)根据定义,当m=2,n=2时,线段BC与线段OA的距离是点A到BC的距离2。当m=5,n=2时,线段BC与线段OA的距离(即线段AB的长) 可由勾股定理求出: 。

(2)分2≤m<4和4≤m≤6两种情况讨论即可。

(3)①由(2)找出点M随线段BC运动所围成的封闭图形即可。

②由(2)分点M在线段上和圆弧上两种情况讨论即可。

2012中考科目:

中考语文】【中考数学】【中考英语】【中考物理】【中考化学

中考政治】【中考历史】【中考生物】【中考地理】 【中考体育

2012中考考前: 

中考动态】【中考心理辅导】 【中考家长】【中考饮食】 【中考政策

2012中考考后:

中考动态】 【中考成绩查询】【中考志愿填报】  【中考分数线

中考录取查询】 【中考状元】【中考择校】 

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。