您当前所在位置:首页 > 论文 > 工学论文 > 其它工学论文

工业工程专业毕业论文范文

编辑:

2015-11-17

分散剂在分散相上的吸附是其显示润湿分散性能的前提。在水体系中,锚固端一般在颗粒的表面形成吸附,它与颗粒的相互作用与锚固基团的种类和粒子的表面性质有关。固体颗粒与分散剂之间的结合力主要有以下几种:

1.2.1离子对

对于强极性表面的无机物颗粒,当粒子表面电荷和超分散剂官能团带有的电荷相反时,高分子分散剂的锚固基团可与颗粒表面的强极性基团以离子对的形式结合起来,高分子分散剂吸附在颗粒表面,见图1A 。另外,如果粒子表面的酸碱性与锚固基团相反,离子对也可形成。

1.2.2氢键

大多数有机颜料没有荷电点,其表面极性不如无机颜料强, 反应活性也不如无机颜料高, 因此一般不能形成离子对的锚固形式。但由于其分子结构中可能含有氢键给体或受体,如酯基、羰基以及醚键等,因此具备形成氢键的能力,高分子分散剂可以通过氢键锚固于颜料表面。由于氢键的键能较低,单一的氢键难以保证足够的吸附强度, 因此每个高分子分散剂分子中需要含有多个锚固基团(见图1B),宜采嵌段或梳状的分子结构。

1.2.3分散颜料的表面处理

有些有机颜料及部分碳黑的表面完全非极性或极性很低,不具备可供超分散剂锚固的活性基团,故不论使用何种超分散剂,分散效果均不明显。此时需使用表面增效剂(见图1C)。这是一种带有极性基团的颜料衍生物,其分子结构及物理化学性质与待分散颜料非常相似,因此它能通过分子间范德华力紧紧地吸附于有机颜料表面,同时通过其分子结构的极性基团为高分子分散剂锚固基团的吸附提供活性位。通过这种“协同效应”,高分子分散剂就能对有机颜料产生非常有效的润湿和稳定作用。

(A. 在强极性粒子表面的单点离子对吸附;B. 通过多点氢键吸附;C. 通过表面增效剂在非极性表面吸附。)

1.3研究高分子分散剂吸附行为的方法

为了全面表征高分子分散剂在颜料表面的吸附,需要确定3个参数:①吸附量Γ(mg•m2或mol•m2);②与颜料表面直接结合的链段分数p;③吸附层厚度δh。

1.3.1吸附等温线测量法

可以通过测定吸附前后体系中高分子分散剂的浓度,计算分散剂在颜料表面的吸附量Γ:

1.3.3吸附层厚度δh

可以采用超速离心、动态光散射、微量电泳等方法,通过测试吸附分散剂前后颜料粒子半径的变化确定吸附在颜料表面的高分子分散剂的厚度。

2影响高分子分散剂性能的因素

目前已提出了3种分散稳定机理解释聚合物分散剂的稳定化作用:双电层理论(DLVO理论)、空间稳定机理、竭尽稳定机理,影响高分子分散剂性能的主要有以下5个因素:

2.1分散剂的结构

高分子分散剂由亲油基和亲水基组成,其中常见的亲油基有芳基、烷芳基、烃链等非极性基团;常见的亲水基有羧基、磺酸基、羟基、氨基及长的聚醚链等。不同亲油-亲水基的组合可得到种类繁多的分散剂,而不同种类的分散剂因其化学结构不同,与颜料粒子间的结合方式、结合力大小均有所差别。目前,很多分散剂中都含有芳环结构,利用芳环与颜料分子平面形成强的π-π键,使二者牢固地结合在一起。颜料-分散剂-水三者之间的作用力是粒子能否稳定分散的决定因素,只有分散剂与水有足够的亲和力,方可具备良好的溶解性,聚合物链才能在水中充分伸展,形成有效的立体屏障。在此前提下,亲油端与颜料离子的结合力越大,越有利于分散稳定。但是,若分散剂的亲水性太大,则其亲油性相对减弱,甚至使分散剂从粒子表面脱落,达不到分散的目的。故合成聚合物分散剂时,亲水性单体的含量不可过高。通常是在分散剂具备一定的水溶性的情况下,疏水性越强,分散效果越好。

2.2分散剂用中和剂

羧酸基或磺酸基聚合物在水中并不溶解,要在其中加入中和剂,使其解离为COO-或SO32-,聚合物才具有水溶性。早期使用NaOH、KOH作中和剂,钠离子和钾离子具有吸湿性,滞留在体系中会影响涂层的耐水性。后改用氨水,但中和后的聚合物盐会逐渐释放出氨,使分散剂的水溶性降低,分散效果变差。挥发性较低的醇胺作中和剂既可保证分散稳定,又不影响涂层性能。

编辑老师为大家整理了工业工程专业毕业论文,希望对大家有所帮助。更多详情请点击工学论文

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。