您当前所在位置:首页 > 高中 > 高三 > 高三数学 > 高三数学教案

高三理科数学复习教案:推理与证明复习教学案

编辑:

2013-04-03

故由(1)(2)可知,对任意正整数n都有f(n)能被36整除.

由f(1)=36知36是整除f(n)的最大值.

【点拨】 与正整数n有关的整除性问题也可考虑用数学归纳法证明. 在证明n=k+1结论也成立时,要注意“凑形”,即凑出归纳假设的形式,以便于充分利用归纳假设的条件.

【变式训练2】求证:当n为正整数时,f(n)=32n+2-8n-9能被64整除.

【证明】方法一:①当n=1时,f(1)=34-8-9=64,命题显然成立.

②假设当n=k(k≥1,k∈N*)时结论成立,即f(k)=32k+2-8k-9能被64整除.

由于32(k+1)+2-8(k+1)-9=9(32k+2-8k-9)+9•8k+9•9-8(k+1)-9=9(32k+2-8k-9)+64(k+1),即f(k+1)=9f(k)+64(k+1),

所以n=k+1时命题也成立.

根据①②可知,对任意的n∈N*,命题都成立.

方法二:①当n=1时,f(1)=34-8-9=64,命题显然成立.

②假设当n=k(k≥1,k∈N*)时,f(k)=32k+2-8k-9能被64整除.由归纳假设,设32k+2-8k-9=64m(m为大于1的自然数),将32k+2=64m+8k+9代入到f(k +1)中得

f(k+1)=9(64m+8k+9)-8(k+1)-9=64(9m+k+1),所以n=k+1时命题也成立.

根据①②可知,对任意的n∈N*,命题都成立.

题型三 数学归纳法在函数、数列、不等式证明中的运用

【例3】(2009山东)等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上.

(1)求r的值;

(2)当b=2时,记bn=2(log2an+1)(n∈N*),求证:对任意的n∈N*,不等式b1+1b1•

b2+1b2•…•bn+1bn>n+1成立.

【解析】(1)因为点(n,Sn)均在函数y=bx+r(b>0且b≠1,b,r均为常数)的图象上,

所以Sn=bn+r(b>0且b≠1,b,r均为常数).

当n=1时,a1=S1=b+r;当n≥2时,an=Sn-Sn-1=bn+r-bn-1-r=(b-1)bn-1.

又数列{an}为等比数列,故r=-1且公比为b.

(2)当b=2时,an=2n-1,

所以bn=2(log2an+1)=2(log22n-1+1)=2n(n∈N*),

所以bn+1bn=2n+12n,

于是要证明的不等式为32•54•…•2n+12n>n+1对任意的n∈N*成立.

下面用数学归纳法证明.

当n=1时,32>2显然成立.

假设当n=k时不等式成立,即32•54•…•2k+12k>k+1.

则当n=k+1时,32•54•…•2k+12k•2k+32k+2>k+1•2k+32k+2=k+1•(2k+32k+2)2=(2k+3)24(k+1)

=[2(k+1)+1]24(k+1)=4(k+1)2+4(k+1)+14(k+1)=(k+1)+1+14(k+1)>(k+1)+1,

即当n=k+1时不等式成立,所以原不等式对任意n∈N*成立.

【点拨】 运用归纳推理得到的结论不一定正确,需进行证明.用数学归纳法证明不等式时必须要利用归纳假设的条件,并且灵活运用放缩法、基本不等式等数学方法.

【变式训练3】设函数f(x)=ex-1+ax(a∈R).

(1)若函数f(x)在x=1处有极值,且函数g(x)=f(x)+b在(0,+∞)上有零点,求b的最大值;

(2)若f(x)在(1,2)上为单调函数,求实数a的取值范围;

(3)在(1)的条件下,数列{an}中a1=1,an+1=f(an)-f′(an),求|an+1-an|的最小值.

【解析】(1)f′(x)=ex-1-ax2,又函数f(x)在x=1处有极值,

所以f′(1)=0,即a=1,经检验符合题意.

g′(x)=ex-1-1x2,当x∈(0,1)时,g′(x)<0,g(x)为减函数,当x=1时,g′(x)=0,当x∈(1,+∞)时g′(x)>0,g(x)为增函数.

所以g(x)在x=1时取得极小值g(1)=2+b,依题意g(1)≤0,所以b≤-2,

所以b的最大值为-2.

(2)f′(x)=ex-1-ax2,

当f(x)在(1,2)上单调递增时,ex-1-ax2≥0在[1,2]上恒成立,所以a≤x2ex-1,

令h(x)=x2 ,则h′(x)=ex-1(x2+2x)>0在[1,2]上恒成立,即h(x)在[1,2]上单调递增,

所以h(x)在[1,2]上的最小值为h(1)=1,所以a≤1;

当f(x)在[1,2]上单调递减时,同理a≥x2ex-1,

h(x)=x2ex-1在[1,2]上的最大值为h(2)=4e,所以a≥4e.

综上实数a的取值范围为a≤1或a≥4e.

(3)由(1)得a=1,所以f(x)-f′(x)=1x+1x2,因此an+1=1an+1a2n,a1=1,所以a2=2,可得02.用数学归纳法证明如下:

①当n=1时,a3=34,a4=289,结论成立;

②设n=k,k∈N*时结论成立,即02,

则n=k+1时,a2k+3=1a2k+2+1a22k+2<12+12=1,

所以01+1=2.

所以n=k+1时结论也成立,

根据①②可得02恒成立,

所以|an+1-an|≥a2-a1=2-1=1,即|an+1-an|的最小值为1.

总结 提高

数学归纳法是证明与自然数有关的命题的常用方法,它是在归纳的基础上进行的演绎推理,其大前提是皮亚诺公理(即归纳公理):

设M是正整数集合的子集,且具有如下性质:

①1∈M;

②若k∈M,则k+1∈M,那么必有M=N*成立.

数学归纳法证明的两个步骤体现了递推的数学思想,第一步是递推的基础,第二步是递推的依据,通过对两个命题的证明替代了无限多次的验证,实现了有限与无限的辩证统一.

从近几年的高考试题来看,比较注重于对数学归纳法的思想本质的考查,如“归纳、猜想、证明”是一种常见的命题形式.而涉及的知识内容也是很广泛的,可覆盖代数命题、三角恒等式、不等式、数列、几何命题、整除性命题等.其难点往往在第二步,关键是“凑形”以便运用归纳假设的条件.

【总结】2013年精品学习网为小编在此为您收集了此文章“高三理科数学复习教案:推理与证明复习教学案”,今后还会发布更多更好的文章希望对大家有所帮助,祝您在精品学习网学习愉快!

更多精彩内容请点击:高中 > 高三 > 高三数学 > 高三数学教案

免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。