您当前所在位置:首页 > 中考 > 中考数学 > 中考数学模拟题

2012中考数学压轴题及答案40例(5)

编辑:sx_gaomj

2012-05-16


精品学习网中考频道提供大量中考资料,在第一时间更新中考资讯。以下是2012中考数学压轴题及答案40例:

16.如图,已知与 轴交于点 和 的抛物线 的顶点为 ,抛物线 与 关于 轴对称,顶点为 .

(1)求抛物线 的函数关系式;

(2)已知原点 ,定点 , 上的点 与 上的点 始终关于 轴对称,则当点 运动到何处时,以点 为顶点的四边形是平行四边形?

(3)在 上是否存在点 ,使 是以 为斜边且一个角为 的直角三角形?若存,求出点 的坐标;若不存在,说明理由.

解:(1)由题意知点 的坐标为 .

设 的函数关系式为 .

又 点 在抛物线 上,

,解得 .

抛物线 的函数关系式为 (或 ).

(2) 与 始终关于 轴对称,

与 轴平行.

设点 的横坐标为 ,则其纵坐标为 ,

, ,即 .

当 时,解得 .

当 时,解得 .

当点 运动到 或 或 或 时,

,以点 为顶点的四边形是平行四边形.

(3)满足条件的点 不存在.理由如下:若存在满足条件的点 在 上,则

, (或 ),

.

过点 作 于点 ,可得 .

, , .

点 的坐标为 .

但是,当 时, .

不存在这样的点 构成满足条件的直角三角形.

17.如图,抛物线y=-x 2+bx+c与x轴交于A(1,0),B(-3,0)两点.

(1)求该抛物线的解析式;

(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出点Q的坐标;若不存在,请说明理由;

(3)在(1)中的抛物线上的第二象限内是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值;若不存在,请说明理由.

解:(1)将A(1,0),B(-3,0)代入y=-x 2+bx+c得

················································································ 2分

解得 ···························································································· 3分

∴该抛物线的解析式为y=-x 2-2x+3.············································ 4分

(2)存在.····································································································· 5分

该抛物线的对称轴为x=- =-1

∵抛物线交x轴于A、B两点,∴A、B两点关于抛物线的对称轴x=-1对称.

由轴对称的性质可知,直线BC与x=-1的交点即为所求的Q点,此时△QAC的周长最小,如图1.

将x=0代入y=-x 2-2x+3,得y=3.

∴点C的坐标为(0,3).

设直线BC的解析式为y=kx+b1,

将B(-3,0),C(0,3)代入,得

解得 ∴直线BC的解析式为y=x+3.··············· 6分

联立 解得 ∴点Q的坐标为(-1,2).··································································· 7分

(3)存在.····································································································· 8分

设P点的坐标为(x,-x 2-2x+3)(-3

∵S△PBC =S四边形PBOC -S△BOC =S四边形PBOC - ×3×3=S四边形PBOC - 当S四边形PBOC有最大值时,S△PBC就最大.

∵S四边形PBOC =SRt△PBE+S直角梯形PEOC ························································· 9分

= BE·PE+ (PE+OC)·OE

= (x+3)(-x 2-2x+3)+ (-x 2-2x+3+3)(-x)

=- (x+ )2+ + 当x=- 时,S四边形PBOC最大值为 + .

∴S△PBC最大值= + - = .············ 10分

当x=- 时,-x 2-2x+3=-(- )2-2×(- )+3= .

∴点P的坐标为(- , ).···························································· 11分

18.如图,已知抛物线y=a(x-1)2+ (a≠0)经过点A(-2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点D平行于 轴的直线交射线OM于点C,B在 轴正半轴上,连结BC.

(1)求该抛物线的解析式;

(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问:当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?

(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.

解:(1)把A(-2,0)代入y=a(x-1)2+ ,得0=a(-2-1)2+ .

∴a=- ····························································································· 1分

∴该抛物线的解析式为y=- (x-1)2+ 即y=- x 2+ x+ .···························································· 3分

(2)设点D的坐标为(xD,yD),由于D为抛物线的顶点

∴xD=- =1,yD=- ×1 2+ ×1+ = .

∴点D的坐标为(1, ).

如图,过点D作DN⊥x轴于N,则DN= ,AN=3,∴AD= =6.

∴∠DAO=60°······················································································· 4分

∵OM∥AD

①当AD=OP时,四边形DAOP为平行四边形.

∴OP=6

∴t=6(s)································································ 5分

②当DP⊥OM时,四边形DAOP为直角梯形.

过点O作OE⊥AD轴于E.

在Rt△AOE中,∵AO=2,∠EAO=60°,∴AE=1.

(注:也可通过Rt△AOE∽Rt△AND求出AE=1)

∵四边形DEOP为矩形,∴OP=DE=6-1=5.

∴t=5(s)····························································································· 6分

③当PD=OA时,四边形DAOP为等腰梯形,此时OP=AD-2AE=6-2=4.

∴t=4(s)

综上所述,当t=6s、5s、4s时,四边形DAOP分别为平行四边形、直角梯形、等腰梯形.

························································································· 7分

(3)∵∠DAO=60°,OM∥AD,∴∠COB=60°.

又∵OC=OB,∴△COB是等边三角形,∴OB=OC=AD=6.

∵BQ=2t,∴OQ=6-2t(0

过点P作PF⊥x轴于F,则PF= t.················································· 8分

∴S四边形BCPQ =S△COB -S△POQ

= ×6× - ×(6-2t)× t

= (t- )2+ ······················································· 9分

∴当t= (s)时,S四边形BCPQ的最小值为 .······························ 10分

此时OQ=6-2t=6-2× =3,OP= ,OF= ,∴QF=3- = ,PF= .

∴PQ= = = ······································· 11分

19.如图,已知直线y=- x+1交坐标轴于A、B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线另一个交点为E.

(1)请直接写出点C,D的坐标;

(2)求抛物线的解析式;

(3)若正方形以每秒 个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止.设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;

(4)在(3)的条件下,抛物线与正方形一起平移,直至顶点D落在x轴上时停止,求抛物线上C、E两点间的抛物线弧所扫过的面积.

解:(1)C(3,2),D(1,3);················································································ 2分

(2)设抛物线的解析式为y=ax 2+bx+c,把A(0,1),D(1,3),C(3,2)代入

得 解得 ···················································· 4分

∴抛物线的解析式为y=- x 2+ x+1;········································ 5分

(3)①当点A运动到点F(F为原B点的位置)时

∵AF= = ,∴t= =1(秒).

当0< t ≤1时,如图1.

B′F=AA′= t

∵Rt△AOF∽Rt△∠GB ′F,∴ = .

∴B ′G= ·B ′F= × t= t

正方形落在x轴下方部分的面积为S即为△B ′FG的面积S△B′FG

∴S=S△B′FG= B ′F·B ′G= × t× t= t 2······················ 7分

②当点C运动到x轴上时

∵Rt△BCC ′∽Rt△∠AOB,∴ = .

∴CC ′= ·BC= × = ,∴t= =2(秒).

当1< t ≤2时,如图2.

∵A ′B ′=AB= ,∴A ′F= t- .

∴A ′G= ∵B ′H= t

∴S=S梯形A′B′HG= (A ′G+B ′H)·A ′B ′

= ( + t)· = t- ······································································ 9分

③当点D运动到x轴上时

DD′= t= =3(秒)

当2< t ≤3时,如图3.

∵A ′G= ∴GD′= - = ∴D′H= -

∴S△D′GH = ( )( - )=( )2

∴S=S正方形A′B′C′D′ -S△D′GH

=( )2-( )2

=- t 2+ t- ······································································ 11分

(4)如图4,抛物线上C、E两点间的抛物线弧所扫过的面积为图中阴影部分的面积.

∵t=3,BB′=AA′=DD′= ∴S阴影=S矩形BB′C′C ············································································ 13分

=BB′·BC

= × =15··························································································· 14分

20.已知:抛物线y=x 2-2x+a(a <0)与y轴相交于点A,顶点为M.直线y= x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.

(1)填空:试用含a的代数式分别表示点M与N的坐标,则M( , ),N( , );

(2)如图,将△NAC沿 轴翻折,若点N的对应点N ′恰好落在抛物线上,AN ′与 轴交于点D,连结CD,求a的值和四边形ADCN的面积;

(3)在抛物线y=x 2-2x+a(a <0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.

解:(1)M(1,a-1),N( a,- a).······························································· 4分

(2)∵点N ′是△NAC沿 轴翻折后点N的对应点

∴点N ′与点N关于y轴对称,∴N ′(- a,- a).

将N ′(- a,- a)代入y=x 2-2x+a,得- a=(- a)2-2×(- a)+a

整理得4a 2+9a=0,解得a1=0(不合题意,舍去),a2=- .·· 6分

∴N ′(3, ),∴点N到 轴的距离为3.

∵a=- ,抛物线y=x 2-2x+a与y轴相交于点A,∴A(0,- ).

∴直线AN ′的解析式为y=x - ,将y=0代入,得x = .

∴D( ,0),∴点D到 轴的距离为 .

∴S四边形ADCN =S△ACN +S△ACN = × ×3+ × × = ·········· 8分

(3)如图,当点P在y轴的左侧时,若四边形ACPN是平行四边形,则PN平行且等于AC.

∴将点N向上平移-2a个单位可得到点P,其坐标为( a,- a),代入抛物线的解析式,得:- a=( a)2-2× a+a,整理得8a 2+3a=0.

解得a1=0(不合题意,舍去),a2=- .

∴P(- , )···················································································· 10分

当点P在y轴的右侧时,若四边形APCN是平行四边形,

则AC与PN互相平分.

∴OA=OC,OP=ON,点P与点N关于原点对称.

∴P(- a, a),代入y=x 2-2x+a,得

a=(- a)2-2×(- a)+a,整理得8a 2+15a=0.

解得a1=0(不合题意,舍去),a2=- .

∴P( ,- )····················································································· 12分

∴存在这样的点P,使得以P,A,C,N为顶点的四边形是平行四边形,点P的坐标为

(- , )或( ,- ).

相关链接:

2012中考数学压轴题及答案40例(6)

2012中考数学压轴题及答案40例(7)


免责声明

精品学习网(51edu.com)在建设过程中引用了互联网上的一些信息资源并对有明确来源的信息注明了出处,版权归原作者及原网站所有,如果您对本站信息资源版权的归属问题存有异议,请您致信qinquan#51edu.com(将#换成@),我们会立即做出答复并及时解决。如果您认为本站有侵犯您权益的行为,请通知我们,我们一定根据实际情况及时处理。